
https://www.ida.liu.se/~TDDI11	 Embedded	Software	 1	

Chapter	4		Mixing	Assembly	and	C1	

The	goal	is	to	learn	how	to	use	C	and	assembly	in	the	same	program	and	become	aware	of	performance	
issues.	We	will	implement	a	64-bit	multiplication.	The	related	files	are	in	the	following	directory:	

/home/TDDI11/lab/skel/lab2	

Please	copy	them	as	usual	to	your	own	account.	Your	modifications	go	to	“llmultiply.asm”	and	“main.c”.	
The	rest	of	the	files	are	the	usual	files	that	we	used	before.	

1.1 Assignment	1,	Assembly	Implementation		

Processors	used	in	a	small	(embedded)	part	in	a	mass	produced	product	have	to	be	very	cheap.	Therefore,	
they	are	quite	rudimentary.	For	example,	they	seldom	have	floating	point	arithmetic	capability,	or	they	
may	be	limited	to	8-bit	integer	operations.	Software	must	compensate	for	the	limited	hardware	capability.	
We	will	look	at	an	example	in	which	we	want	to	multiply	two	numbers	larger	than	the	hardware	supports	
natively.	 On	 an	 8-bit	 processor	 this	 could	 involve	multiplication	 of	 two	 16-bit	 integers.	 As	 our	 target	
already	can	do	that	we	will	look	at	multiplying	two	64-bit	operands	on	our	target	machine	that	natively	
supports	only	32-bit	operands.	

Our	compiler	supports	64-bit	integers	with	a	data	type	called	“long	long	int”.	Since	the	registers	of	the	
Intel	processor	are	only	32-bits	wide,	how	does	the	compiler	generate	code	to	implement	𝑎×𝑏	when	𝑎	
and	𝑏	are	long	long	int’s?	This	is	discussed	later	on	in	this	chapter.	

Write	a	function	in	assembly	that	has	the	following	C	signature:		

void llmultiply(unsigned long long int a, unsigned long long int b, unsigned char *result);

The	function	multiplies	the	two	64-bit	parameters	𝑎	and	𝑏.	The	result	of	the	multiplication	is	a	128-bit	
number.	It	has	to	be	copied	to	the	array	of	16	bytes	that	is	pointed	to	by	result.	Note	that	the	x86	machines	
are	 little-endian,	meaning	that	the	 least	significant	byte	of	a	multi-byte	number	 is	placed	at	the	 lower	
address,	and	the	most	significant	byte	of	a	multi-byte	number	is	placed	at	the	higher	address.	

Based	on	the	explanations	in	section	4.4,	you	will	implement	your	multiplication	function	and	test	it	with	
tests	given	in	section	4.5.	These	tests	are	also	given	in	“main.c”.	Test	your	function	with	at	least	the	given	
test	cases.	The	given	test	cases	are	tailored	to	generate	carries	in	all	possible	steps	of	the	calculation.	

	 	

																																																													
1	Note	that	the	structure	of	the	chapters	are	not	identical.	Please	read	them	from	beginning	to	the	end,	before	you	
get	to	work.	Some	concepts	may	be	explained	at	the	end	of	a	chapter.	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 2	

	

1.2 Assignment	2,	C	Implementation	

Implement	the	same	function,	but	this	time	in	C.	Here	you	must	make	sure	to	use	appropriate	data	type	
for	the	multiplication	and	addition	in	order	to	be	able	to	store	the	entire	result	in	a	sufficiently	large	type.	

• Compile	it	without	any	optimization	and	verify	that	it	gives	correct	results.	
• Compile	it	with	optimization	turned	on	and	verify	that	it	gives	correct	results.	

The	compiler	optimization	options	are	described	in	section	4.7.	

1.3 Assignment	3,	Performance	Comparison	

Call	“llmultiply”	from	a	C	program	in	which	you	test	the	function.	Put	the	invocation	of	the	function	in	a	
loop	in	order	to	invoke	it	many	times.	Obtain	the	time	or	the	contents	of	the	CPU	cycle	register	before	
entering	and	after	exiting	the	loop.	Print	the	difference	of	the	values	before	and	after	the	loop.	When	
emulating	on	Qemu,	depending	on	the	host	machine,	the	results	might	not	make	sense.	The	important	
thing	is	that	you	write	the	program	correctly.	No	worries	if	Qemu	returns	wrong	values.	

Test	both	your	C-version	(optimized	and	non-optimized)	and	your	Assembly-version	in	the	same	way	(the	
same	 number	 of	 iterations).	 Which	 version	 is	 most	 effective?	 How	 big	 improvement	 does	 compiler	
optimization	give?	

Note	that	depending	on	the	computer-architecture	and	the	compiler,	the	optimization	benefits	might	be	
partly	 resulted	 from	 optimized	 loop	 implementation	 that	 affects	 the	 testing-loop	 execution	 not	
necessarily	the	actual	instruction	inside	the	loop.	

1.4 Multiplication	theory	

Consider	that	each	64-bit	operand	can	be	split	in	two	32-bit	parts,	one	contains	the	high	order	bits	and	
the	other	one	contains	the	low	order	bits.	

𝑎	 = 	 𝑎&	×	2() 	+ 	𝑎+		

𝑏	 = 	 𝑏&	×	2() 	+ 	𝑏+ 	

If	we	break	 the	operands	 to	 two	parts	 as	 suggested	above	and	perform	 the	multiplication	with	 these	
separated	parts	we	get:	

𝑎	×	𝑏	 = 	 𝑎&×	2() 	+ 	𝑎+ × 𝑏&	×	2() 	+ 	𝑏+ =	

= 	𝑎&×𝑏&×2,- 	+		
+	 𝑎&×𝑏+ + 	𝑎+×𝑏& ×2() 	+	
+	𝑎+×𝑏+ 	

All	multiplications	that	appear	in	the	above	expressions	are	now	32-bit	multiplications	and	therefore	they	
can	be	implemented	on	an	Intel	x86	processor.	Your	only	concern	is	to	handle	the	additions	and	carries	
that	may	appear	after	the	additions.	Note	that	each	32-bit	multiplication	yields	a	64-bit	result,	but	you	
can	only	add	32-bits	in	each	addition.	A	graphical	view	of	the	procedure	is	given	below.		Think	carefully	of	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 3	

where	 carries	 can	 occur.	 In	 the	 figure	 below,	 in	 the	 lower	 box	 that	 shows	 the	 results,	 the	 numbers	
represents	a	numeration	of	the	bytes.	For	example	“result	3	..	0”	represents	4	bytes	that	have	the	lowest	
significant	bits.	

	

Be	careful	of	the	carries	when	performing	the	additions.	

1.5 Test	Cases	

	We	provide	the	following	test	cases.	You	should	of	course	add	your	own.	All	digits	are	hexadecimal.	

0000111122223333 * 0000555566667777 = 0000000005B061D958BF0ECA7C0481B5

3456FEDCAAAA1000 * EDBA00112233FF01 = 309A912AF7188C57E62072DD409A1000

FFFFEEEEDDDDCCCC * BBBBAAAA99998888 = BBBB9E2692C5DDDCC28F7531048D2C60

FFFFFFFFFFFFFFFF * FFFFFFFFFFFFFFFF = FFFFFFFFFFFFFFFE0000000000000001

00000001FFFFFFFF * 00000001FFFFFFFF = 0000000000000003FFFFFFFC00000001

FFFEFFFFFFFFFFFF * FFFF0001FFFFFFFF = FFFE0002FFFDFFFE0001FFFE00000001

1.6 C	Function	Call	Interface		

When	writing	the	assembly	code	that	cooperates	with	C-code	you	have	to	follow	the	compilers	idea	of	
how	to	pass	parameters	to	a	function.	The	parameters	are	passed	on	the	stack.	The	stack	grows	from	large	
addresses	 to	small	ones.	The	 last	parameter	 to	a	 function	 is	pushed	first	on	the	stack.	Hence,	 the	 last	
parameter	will	be	at	a	larger	address	than	the	first	parameter.	The	stack	pointer	points	to	the	top	of	the	
stack	and	not	to	the	first	free	location!	That	means	that	pushing	a	value	on	the	stack	first	decrements	the	
stack	pointer	and	then	writes	the	value.	

To	understand	better,	look	at	the	following	snapshot	of	a	stack	frame	just	after	entering	the	function:	

byte 0 of return address | 0x3fffffe8 <-- stack top (esp)

byte 1 of return address | 0x3fffffe9

byte 2 of return address | 0x3fffffea

byte 3 of return address | 0x3fffffeb

;; The first parameter (a) start here.

;; Notice the 32-bit little endianess:

;; The least significant byte come first (byte 0)

;; The most significant byte come last (byte 3)

byte 0 of a, byte 0 of al | 0x3fffffec

byte 1 of a, byte 1 of al | 0x3fffffed

byte 2 of a, byte 2 of al | 0x3fffffee

byte 3 of a, byte 3 of al | 0x3fffffef

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 4	

byte 4 of a, byte 0 of ah | 0x3ffffff0

byte 5 of a, byte 1 of ah | 0x3ffffff1

byte 6 of a, byte 2 of ah | 0x3ffffff2

byte 7 of a, byte 3 of ah | 0x3ffffff3

;; The second parameter (b) start here.

byte 0 of b, byte 0 of bl | 0x3ffffff4

byte 1 of b, byte 1 of bl | 0x3ffffff5

byte 2 of b, byte 2 of bl | 0x3ffffff6

byte 3 of b, byte 3 of bl | 0x3ffffff7

byte 4 of b, byte 0 of bh | 0x3ffffff8

byte 5 of b, byte 1 of bh | 0x3ffffff9

byte 6 of b, byte 2 of bh | 0x3ffffffa

byte 7 of b, byte 3 of bh | 0x3ffffffb

;; The third parameter (c) start here.

;; Notice that only the address to the array is passed.

byte 0 of result array address| 0x3ffffffc

byte 1 of result array address| 0x3ffffffd

byte 2 of result array address| 0x3ffffffe

byte 3 of result array address| 0x3fffffff <-- stack bottom

Typically	a	function	has	the	following	prologue:		

push ebp ;; save the value of ebp register on the stack

mov ebp, esp ;; save the address of the stack frame

;; (the value of esp after entering the function)

The	reason	for	the	prologue	is	to	get	a	fix	base	pointer	for	convenient	access	to	the	function	parameters	
(the	stack	pointer	esp	may	be	changed	in	the	function	to	store	local	variables).	It	also	makes	printing	of	a	
stack	 trace	 easy,	which	 is	 an	 important	 debug	 feature.	 After	 the	 prologue	 ebp	will	 contain	 the	 value	
0x3fffffe4,	i.e.	the	value	of	the	stack	pointer	before	pushing	ebp,	that	is	0x3fffffe8,	minus	the	
four	locations	occupied	by	ebp.	The	stack	will	now	look	like	this:		

byte 0 of previous stack frame (ebp) | 0x3fffffe4 <-- top (ebp, esp)

byte 1 of previous stack frame (ebp) | 0x3fffffe5

byte 2 of previous stack frame (ebp) | 0x3fffffe6

byte 3 of previous stack frame (ebp) | 0x3fffffe7

byte 0 of return address | 0x3fffffe8 <-- previous top

byte 1 of return address | 0x3fffffe9

byte 2 of return address | 0x3fffffea

byte 3 of return address | 0x3fffffeb

byte 0 of a, byte 0 of al | 0x3fffffec <-- parameter 1

...

To	illustrate	how	you	can	get	that	said	convenient	access	to	the	parameters,	let’s	add	the	values	of	𝑏&	and	
𝑎+ 	as	an	example	(this	addition	is	of	course	irrelevant	for	the	assignment).	You	will	find	𝑏&	20	bytes	from	
the	address	in	ebp	(count	in	the	picture).	To	get	the	value	of	𝑏&	to	register	eax	we	write:	

mov eax, [ebp + 20]

Then	we	fetch	𝑎+,	but	as	eax	now	is	occupied	we	have	to	use	another	destination	register:	

mov ebx, [ebp + 8]

	 	

https://www.ida.liu.se/~TDDI11	 Embedded	Software	 5	

And	to	add	the	two	(with	the	result	in	eax)	we	do:		

add eax, ebx

To	make	your	code	more	readable	it	is	good	to	use	symbolic	names	for	the	offsets:	

mov eax, [ebp + BH_OFFSET]

mov ebx, [ebp + AL_OFFSET]

add eax, ebx

As	an	exercise,	think	of	how	to	load	the	address	of	the	first	byte	of	the	result	array	in	ebx.	

Since	we	push	ebp	in	the	prologue	inside	the	function	we	should	restore	the	previous	value	before	we	
return.	We	also	have	to	make	sure	the	stack	pointer	point	to	the	same	address	it	had	when	we	entered	
the	function,	in	order	to	use	the	correct	return	address.	This	is	the	function	epilogue	that	is	to	pop	ebp	
from	the	stack	before	leaving	the	function.		

mov esp, ebp ;; perhaps needed...

pop ebp

ret

1.7 Compiler	Optimizations	

In	order	to	compile	without	any	optimization,	pass	the	-O0	switch	(minus	capital	O	--	as	in	"Origami"	--	
followed	by	zero)	to	the	gcc	compiler.	In	order	to	compile	with	full	optimization,	pass	-O3	to	the	compiler.	
You	can	do	it	by	modifying	the	CFLAGS	in	your	Makefile.	

1.8 Deliverables	

The	 assembly	 language	 and	 C	 language	 implementations	 of	 your	 “llmultiply”	 function.	 Demo	 the	
application	for	the	lab	assistant.	Present	your	conclusions	with	respect	to	the	three	run	times.		

Fill	and	send	in	the	feedback	questionnaire.	

1.9 Resources	

NASM	reference:	 http://www.nasm.us/doc/	

NASM	tutorial:	 	 http://www.grack.com/downloads/djgpp/nasm/djgppnasm.txt	

Instruction	set:	 	 http://courses.ece.uiuc.edu/ece390/books/labmanual/inst-ref-general.html	

Others:		 	

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html	

https://en.wikipedia.org/wiki/X86_instruction_listings	

	

